What value should come in place of ‘?’ in the following question?

\(\frac{{\left( {\frac{1}{2}\; \div \frac{1}{4}\;of\frac{1}{6}} \right)}}{{\left( {\frac{1}{2}\; \times 4 \times \frac{1}{6}} \right)}} + \;\frac{{\left( {\frac{1}{2} - \frac{1}{4}\;of\frac{1}{6}} \right)}}{{\left( {\frac{1}{2} - \frac{1}{4}} \right) \times \frac{1}{6}}} - \frac{{2.3}}{{0.05}} = ?\)

Option 1 : 1

\(\frac{{\left( {\frac{1}{2}\; \div \frac{1}{4}\;of\frac{1}{6}} \right)}}{{\left( {\frac{1}{2}\; \times 4 \times \frac{1}{6}} \right)}} + \;\frac{{\left( {\frac{1}{2} - \frac{1}{4}\;of\frac{1}{6}} \right)}}{{\left( {\frac{1}{2} - \frac{1}{4}} \right) \times \frac{1}{6}}} - \frac{{2.3}}{{0.05}} = ?\)

\(\Rightarrow \frac{{\left( {\frac{1}{2} \times 24} \right)}}{{\left( {\frac{1}{2} \times 4 \times \frac{1}{6}} \right)}} + \;\frac{{\left( {\frac{1}{2} - \frac{1}{{24}}\;} \right)}}{{\frac{1}{4} \times \frac{1}{6}}} - \frac{{2300}}{{50}} = ?\)

\(\Rightarrow \frac{{12}}{{\frac{1}{3}}} + \;\frac{{\left( {\frac{{12}}{{24}} - \frac{1}{{24}}\;} \right)}}{{\frac{1}{{24}}}} - 46 = ?\)

⇒ 36 + 11 – 46 =?

∴ ? = 1